Let \(\emptyset, \lambda \) and \(a \) denote the regular expressions that respectively denote the empty set, the set \(\{\lambda\} \) and the set \(\{a\} \), where \(\lambda \) is the empty string and \(a \) is a letter appearing in the underlying alphabet. Further, let \(r, s \) and \(t \) denote arbitrary regular expressions.

Identities of Regular Expressions

Basic identities

1. \(\emptyset + r = r = r + \emptyset \) \(\emptyset \) is the identity for union.
2. \(\lambda r = r = r \lambda \) \(\lambda \) is the identity for concatenation.
3. \(\emptyset r = \emptyset = r \emptyset \) \(\emptyset \) is the annihilator for concatenation.
4. \(r + r = r \) Idempotence law for union.
5. \(r + s = s + r \) Commutative law for union.
6. \((r + s) + t = r + (s + t) \) Associative law for union.
7. \((rs)t = r(st) \) Associative law for concatenation.
8. \((r + s)t = rt + st \) Distributive law of concatenation over union.

Next level of identities

9. \(\emptyset^* = \lambda \)
10. \(\lambda^* = \lambda \)
11. \(rr^* = r^*r \)
12. \(\lambda + rr^* = r^* \)
13. \((\lambda + r)^* = r^* \)
14. \(r(sr)^* = (rs)^* r \)
15. \((rs + r)^* r = r(sr + r)^* \)
Not-so-obvious identities

16. \(r^*r^* = r^* \)

17. \((r^*)^* = r^* \)

18. \((r^*s^*)^* = (r+s)^* \) \((s^*r^*)^* = (r+s)^* \)

19. \((r^* + s^*)^* = (r+s)^* \)

20. \(r^*(s r^*)^* = (r+s)^* \) \((r^* s^*)^* r^* = (r+s)^* \)

21. \((r^* s^*)^* = \lambda + (r+s)^* s \) \((r s^*)^* = \lambda + r(r+s)^* \)