Closure of Regular sets under Reversal

For a string w, let w^R denote the reversal of w, and for a set L, let $\text{Rev}(L)$ denote the set \{wR: $w \in L$\}. That regularity of L implies regularity of $\text{Rev}(L)$ may be proved in at least three different ways:

1. Start with a DFA, say M, which accepts a regular language L, and build an NFA (with ε-transitions) to accept $\text{Rev}(L)$ by appropriately introducing a new start state, say p, with an ε-transition to each of the final states of M (that are no longer final states of the new machine), reversing the arcs of M, and making the start state of M the sole final state of the new machine.

2. Start with a right-linear grammar, say G, which generates a regular language L, and build a grammar by systematically reversing the right side of each production of G. The resulting grammar generates $\text{Rev}(L)$ and is necessarily left-linear, hence $\text{Rev}(L)$ is regular. (Equivalently, start with a left-linear grammar and likewise build a right-linear grammar.)

3. Start with a regular expression, say r, for a regular language L, and build a regular expression for $\text{Rev}(L)$. To that end, proceed by induction on the number of operators in r.

The present note amplifies the third scheme outlined above. First a few lemmas.

Lemma 1: $\text{Rev}(L_1 \cup L_2) = \text{Rev}(L_1) \cup \text{Rev}(L_2)$.\[1\]

Lemma 2: $\text{Rev}(L_1 \cdot L_2) = \text{Rev}(L_2) \cdot \text{Rev}(L_1)$.

Proof: Let $w \in \text{Rev}(L_1 \cdot L_2)$. Then w may be written as $w = (xy)^R$ where $x \in L_1$ and $y \in L_2$. Now, $(xy)^R = y^Rx^R$ that is clearly in $\text{Rev}(L_2) \cdot \text{Rev}(L_1)$. Accordingly, $\text{Rev}(L_1 \cdot L_2) \subseteq \text{Rev}(L_2) \cdot \text{Rev}(L_1)$.

For the reverse inclusion, let $w \in \text{Rev}(L_2) \cdot \text{Rev}(L_1)$. Then w may be written as $w = y^Rx^R$ where $y \in L_2$ and $x \in L_1$. Now, $y^Rx^R = (xy)^R$ that is clearly in $\text{Rev}(L_1 \cdot L_2)$. Accordingly, $\text{Rev}(L_2) \cdot \text{Rev}(L_1) \subseteq \text{Rev}(L_1 \cdot L_2)$.\[2\]
Lemma 3: $\text{Rev}(L^*) = (\text{Rev}(L))^*$.

Proof: It is clear that the empty string ε is in each of $\text{Rev}(L^*)$ and $(\text{Rev}(L))^*$. In what follows, all strings are of length at least one.

Let w be a typical element of $\text{Rev}(L^*)$. Then $w = x^R$ for some $x \in L^*$. Note that x may be written as $x = x_1 \ldots x_n$, where $n \geq 1$ and $x_i \in L$ for $1 \leq i \leq n$. Now, $w = x^R = (x_n \ldots x_1)^R = x_n^R \ldots x_1^R$. Since x_i^R is in $\text{Rev}(L)$ for $1 \leq i \leq n$, it is clear that $x_n^R \ldots x_1^R$ (that is equal to w) is in $(\text{Rev}(L))^*$. Thus, $\text{Rev}(L^*) \subseteq (\text{Rev}(L))^*$.

For the reverse inclusion, let w be a typical element of $(\text{Rev}(L))^*$. Then $w = w_1 \ldots w_n$, where $n \geq 1$ and $w_i \in \text{Rev}(L)$ for $1 \leq i \leq n$. This means that $w_i^R \in L$ for $1 \leq i \leq n$, i.e., $w_n^R \ldots w_1^R \in L^*$. Since $w_n^R \ldots w_1^R = (w_1 \ldots w_n)^R = w^R$, it is clear that w^R is in L^*, and hence $(w^R)^R$ (that is equal to w) is in $\text{Rev}(L^*)$. Thus, $(\text{Rev}(L))^* \subseteq \text{Rev}(L^*)$.

Theorem: If L is a regular set, then so is $\text{Rev}(L)$.

Proof: Let L be a regular set. Accordingly, L is denoted by a regular expression, say r. It suffices to show that $\text{Rev}(L)$ is denoted by a regular expression. Let k be the number of operators in r. Induct on k to prove the claim.

For $k = 0$, r is of the form ϕ, ε or a where a is a member of the alphabet. Accordingly, L is equal to one of \emptyset, $\{\varepsilon\}$ and $\{a\}$, whence $\text{Rev}(L) = L$, and the claim follows.

For $k \geq 1$, r is of one of the following forms: $r_1 + r_2$, $r_1 \cdot r_2$ and r_1^* where r_1 and r_2 are themselves regular expressions. Let L_1 and L_2 be the languages denoted by r_1 and r_2, respectively. It is clear that the number of operators in each of r_1 and r_2 is strictly less than k. By induction hypothesis, $\text{Rev}(L_1)$ and $\text{Rev}(L_2)$ are denoted by regular expressions, say s_1 and s_2, respectively.

(i) $r = r_1 + r_2$: In this case, $L = L_1 \cup L_2$. By Lemma 1, $\text{Rev}(L_1 \cup L_2) = \text{Rev}(L_1) \cup \text{Rev}(L_2)$ that is clearly denoted by the regular expression $s_1 + s_2$.

(ii) $r = r_1 \cdot r_2$: In this case, $L = L_1 \cdot L_2$. By Lemma 2, $\text{Rev}(L_1 \cdot L_2) = \text{Rev}(L_2) \cdot \text{Rev}(L_1)$ that is clearly denoted by the regular expression $s_2 \cdot s_1$.

(iii) $r = r_1^*$: In this case, $L = L_1^*$. By Lemma 3, $\text{Rev}(L_1^*) = (\text{Rev}(L_1))^*$ that is clearly denoted by the regular expression s_1^*.